Рассчитать высоту треугольника со сторонами 92, 81 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 81 + 13}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-92)(93-81)(93-13)}}{81}\normalsize = 7.37771828}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-92)(93-81)(93-13)}}{92}\normalsize = 6.49559979}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-92)(93-81)(93-13)}}{13}\normalsize = 45.9688601}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 81 и 13 равна 7.37771828
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 81 и 13 равна 6.49559979
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 81 и 13 равна 45.9688601
Ссылка на результат
?n1=92&n2=81&n3=13
Найти высоту треугольника со сторонами 107, 103 и 90
Найти высоту треугольника со сторонами 131, 127 и 123
Найти высоту треугольника со сторонами 40, 25 и 18
Найти высоту треугольника со сторонами 128, 81 и 60
Найти высоту треугольника со сторонами 116, 100 и 80
Найти высоту треугольника со сторонами 124, 115 и 12
Найти высоту треугольника со сторонами 131, 127 и 123
Найти высоту треугольника со сторонами 40, 25 и 18
Найти высоту треугольника со сторонами 128, 81 и 60
Найти высоту треугольника со сторонами 116, 100 и 80
Найти высоту треугольника со сторонами 124, 115 и 12