Рассчитать высоту треугольника со сторонами 92, 81 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 81 + 18}{2}} \normalsize = 95.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-81)(95.5-18)}}{81}\normalsize = 15.1326692}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-81)(95.5-18)}}{92}\normalsize = 13.3233283}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95.5(95.5-92)(95.5-81)(95.5-18)}}{18}\normalsize = 68.0970112}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 81 и 18 равна 15.1326692
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 81 и 18 равна 13.3233283
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 81 и 18 равна 68.0970112
Ссылка на результат
?n1=92&n2=81&n3=18
Найти высоту треугольника со сторонами 16, 13 и 6
Найти высоту треугольника со сторонами 145, 141 и 55
Найти высоту треугольника со сторонами 142, 108 и 40
Найти высоту треугольника со сторонами 139, 119 и 35
Найти высоту треугольника со сторонами 127, 112 и 42
Найти высоту треугольника со сторонами 98, 86 и 20
Найти высоту треугольника со сторонами 145, 141 и 55
Найти высоту треугольника со сторонами 142, 108 и 40
Найти высоту треугольника со сторонами 139, 119 и 35
Найти высоту треугольника со сторонами 127, 112 и 42
Найти высоту треугольника со сторонами 98, 86 и 20