Рассчитать высоту треугольника со сторонами 92, 85 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 85 + 42}{2}} \normalsize = 109.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109.5(109.5-92)(109.5-85)(109.5-42)}}{85}\normalsize = 41.8863081}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109.5(109.5-92)(109.5-85)(109.5-42)}}{92}\normalsize = 38.6993064}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109.5(109.5-92)(109.5-85)(109.5-42)}}{42}\normalsize = 84.7699092}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 85 и 42 равна 41.8863081
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 85 и 42 равна 38.6993064
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 85 и 42 равна 84.7699092
Ссылка на результат
?n1=92&n2=85&n3=42
Найти высоту треугольника со сторонами 149, 106 и 91
Найти высоту треугольника со сторонами 132, 110 и 76
Найти высоту треугольника со сторонами 71, 49 и 49
Найти высоту треугольника со сторонами 124, 111 и 107
Найти высоту треугольника со сторонами 150, 130 и 32
Найти высоту треугольника со сторонами 53, 51 и 44
Найти высоту треугольника со сторонами 132, 110 и 76
Найти высоту треугольника со сторонами 71, 49 и 49
Найти высоту треугольника со сторонами 124, 111 и 107
Найти высоту треугольника со сторонами 150, 130 и 32
Найти высоту треугольника со сторонами 53, 51 и 44