Рассчитать высоту треугольника со сторонами 92, 90 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 90 + 34}{2}} \normalsize = 108}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108(108-92)(108-90)(108-34)}}{90}\normalsize = 33.714092}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108(108-92)(108-90)(108-34)}}{92}\normalsize = 32.981177}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108(108-92)(108-90)(108-34)}}{34}\normalsize = 89.2431847}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 90 и 34 равна 33.714092
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 90 и 34 равна 32.981177
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 90 и 34 равна 89.2431847
Ссылка на результат
?n1=92&n2=90&n3=34
Найти высоту треугольника со сторонами 132, 125 и 112
Найти высоту треугольника со сторонами 108, 104 и 25
Найти высоту треугольника со сторонами 137, 126 и 40
Найти высоту треугольника со сторонами 107, 69 и 55
Найти высоту треугольника со сторонами 145, 108 и 56
Найти высоту треугольника со сторонами 117, 78 и 64
Найти высоту треугольника со сторонами 108, 104 и 25
Найти высоту треугольника со сторонами 137, 126 и 40
Найти высоту треугольника со сторонами 107, 69 и 55
Найти высоту треугольника со сторонами 145, 108 и 56
Найти высоту треугольника со сторонами 117, 78 и 64