Рассчитать высоту треугольника со сторонами 92, 90 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 90 + 78}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-92)(130-90)(130-78)}}{90}\normalsize = 71.2332285}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-92)(130-90)(130-78)}}{92}\normalsize = 69.68468}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-92)(130-90)(130-78)}}{78}\normalsize = 82.1921867}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 90 и 78 равна 71.2332285
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 90 и 78 равна 69.68468
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 90 и 78 равна 82.1921867
Ссылка на результат
?n1=92&n2=90&n3=78
Найти высоту треугольника со сторонами 137, 120 и 66
Найти высоту треугольника со сторонами 148, 141 и 56
Найти высоту треугольника со сторонами 150, 104 и 103
Найти высоту треугольника со сторонами 125, 115 и 63
Найти высоту треугольника со сторонами 81, 76 и 14
Найти высоту треугольника со сторонами 58, 42 и 37
Найти высоту треугольника со сторонами 148, 141 и 56
Найти высоту треугольника со сторонами 150, 104 и 103
Найти высоту треугольника со сторонами 125, 115 и 63
Найти высоту треугольника со сторонами 81, 76 и 14
Найти высоту треугольника со сторонами 58, 42 и 37