Рассчитать высоту треугольника со сторонами 92, 92 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 92 + 46}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-92)(115-92)(115-46)}}{92}\normalsize = 44.5393085}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-92)(115-92)(115-46)}}{92}\normalsize = 44.5393085}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-92)(115-92)(115-46)}}{46}\normalsize = 89.078617}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 92 и 46 равна 44.5393085
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 92 и 46 равна 44.5393085
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 92 и 46 равна 89.078617
Ссылка на результат
?n1=92&n2=92&n3=46
Найти высоту треугольника со сторонами 93, 85 и 44
Найти высоту треугольника со сторонами 148, 120 и 37
Найти высоту треугольника со сторонами 89, 62 и 46
Найти высоту треугольника со сторонами 132, 131 и 121
Найти высоту треугольника со сторонами 122, 87 и 47
Найти высоту треугольника со сторонами 110, 109 и 61
Найти высоту треугольника со сторонами 148, 120 и 37
Найти высоту треугольника со сторонами 89, 62 и 46
Найти высоту треугольника со сторонами 132, 131 и 121
Найти высоту треугольника со сторонами 122, 87 и 47
Найти высоту треугольника со сторонами 110, 109 и 61