Рассчитать высоту треугольника со сторонами 93, 52 и 50

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 52 + 50}{2}} \normalsize = 97.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97.5(97.5-93)(97.5-52)(97.5-50)}}{52}\normalsize = 37.4530957}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97.5(97.5-93)(97.5-52)(97.5-50)}}{93}\normalsize = 20.9415159}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97.5(97.5-93)(97.5-52)(97.5-50)}}{50}\normalsize = 38.9512195}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 52 и 50 равна 37.4530957
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 52 и 50 равна 20.9415159
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 52 и 50 равна 38.9512195
Ссылка на результат
?n1=93&n2=52&n3=50