Рассчитать высоту треугольника со сторонами 93, 68 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 68 + 33}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-93)(97-68)(97-33)}}{68}\normalsize = 24.9589282}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-93)(97-68)(97-33)}}{93}\normalsize = 18.2495389}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-93)(97-68)(97-33)}}{33}\normalsize = 51.4305187}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 68 и 33 равна 24.9589282
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 68 и 33 равна 18.2495389
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 68 и 33 равна 51.4305187
Ссылка на результат
?n1=93&n2=68&n3=33
Найти высоту треугольника со сторонами 102, 99 и 16
Найти высоту треугольника со сторонами 66, 57 и 18
Найти высоту треугольника со сторонами 111, 102 и 93
Найти высоту треугольника со сторонами 139, 137 и 35
Найти высоту треугольника со сторонами 72, 65 и 8
Найти высоту треугольника со сторонами 16, 14 и 11
Найти высоту треугольника со сторонами 66, 57 и 18
Найти высоту треугольника со сторонами 111, 102 и 93
Найти высоту треугольника со сторонами 139, 137 и 35
Найти высоту треугольника со сторонами 72, 65 и 8
Найти высоту треугольника со сторонами 16, 14 и 11