Рассчитать высоту треугольника со сторонами 93, 72 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 72 + 33}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-93)(99-72)(99-33)}}{72}\normalsize = 28.5788383}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-93)(99-72)(99-33)}}{93}\normalsize = 22.1255523}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-93)(99-72)(99-33)}}{33}\normalsize = 62.3538291}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 72 и 33 равна 28.5788383
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 72 и 33 равна 22.1255523
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 72 и 33 равна 62.3538291
Ссылка на результат
?n1=93&n2=72&n3=33
Найти высоту треугольника со сторонами 145, 123 и 73
Найти высоту треугольника со сторонами 108, 88 и 85
Найти высоту треугольника со сторонами 139, 108 и 49
Найти высоту треугольника со сторонами 96, 80 и 65
Найти высоту треугольника со сторонами 150, 144 и 29
Найти высоту треугольника со сторонами 126, 107 и 97
Найти высоту треугольника со сторонами 108, 88 и 85
Найти высоту треугольника со сторонами 139, 108 и 49
Найти высоту треугольника со сторонами 96, 80 и 65
Найти высоту треугольника со сторонами 150, 144 и 29
Найти высоту треугольника со сторонами 126, 107 и 97