Рассчитать высоту треугольника со сторонами 93, 72 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 72 + 36}{2}} \normalsize = 100.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100.5(100.5-93)(100.5-72)(100.5-36)}}{72}\normalsize = 32.6974172}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100.5(100.5-93)(100.5-72)(100.5-36)}}{93}\normalsize = 25.3141295}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100.5(100.5-93)(100.5-72)(100.5-36)}}{36}\normalsize = 65.3948345}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 72 и 36 равна 32.6974172
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 72 и 36 равна 25.3141295
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 72 и 36 равна 65.3948345
Ссылка на результат
?n1=93&n2=72&n3=36
Найти высоту треугольника со сторонами 99, 75 и 31
Найти высоту треугольника со сторонами 130, 87 и 66
Найти высоту треугольника со сторонами 106, 90 и 61
Найти высоту треугольника со сторонами 136, 133 и 92
Найти высоту треугольника со сторонами 112, 92 и 78
Найти высоту треугольника со сторонами 81, 67 и 50
Найти высоту треугольника со сторонами 130, 87 и 66
Найти высоту треугольника со сторонами 106, 90 и 61
Найти высоту треугольника со сторонами 136, 133 и 92
Найти высоту треугольника со сторонами 112, 92 и 78
Найти высоту треугольника со сторонами 81, 67 и 50