Рассчитать высоту треугольника со сторонами 93, 73 и 47

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 73 + 47}{2}} \normalsize = 106.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106.5(106.5-93)(106.5-73)(106.5-47)}}{73}\normalsize = 46.3798895}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106.5(106.5-93)(106.5-73)(106.5-47)}}{93}\normalsize = 36.4057198}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106.5(106.5-93)(106.5-73)(106.5-47)}}{47}\normalsize = 72.0368497}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 73 и 47 равна 46.3798895
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 73 и 47 равна 36.4057198
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 73 и 47 равна 72.0368497
Ссылка на результат
?n1=93&n2=73&n3=47