Рассчитать высоту треугольника со сторонами 93, 73 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 73 + 69}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-93)(117.5-73)(117.5-69)}}{73}\normalsize = 68.2904518}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-93)(117.5-73)(117.5-69)}}{93}\normalsize = 53.6043331}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-93)(117.5-73)(117.5-69)}}{69}\normalsize = 72.2493185}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 73 и 69 равна 68.2904518
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 73 и 69 равна 53.6043331
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 73 и 69 равна 72.2493185
Ссылка на результат
?n1=93&n2=73&n3=69
Найти высоту треугольника со сторонами 122, 103 и 30
Найти высоту треугольника со сторонами 50, 43 и 12
Найти высоту треугольника со сторонами 134, 129 и 49
Найти высоту треугольника со сторонами 129, 105 и 34
Найти высоту треугольника со сторонами 116, 106 и 61
Найти высоту треугольника со сторонами 102, 83 и 53
Найти высоту треугольника со сторонами 50, 43 и 12
Найти высоту треугольника со сторонами 134, 129 и 49
Найти высоту треугольника со сторонами 129, 105 и 34
Найти высоту треугольника со сторонами 116, 106 и 61
Найти высоту треугольника со сторонами 102, 83 и 53