Рассчитать высоту треугольника со сторонами 93, 85 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 85 + 46}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-93)(112-85)(112-46)}}{85}\normalsize = 45.8195407}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-93)(112-85)(112-46)}}{93}\normalsize = 41.8780748}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-93)(112-85)(112-46)}}{46}\normalsize = 84.6665426}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 85 и 46 равна 45.8195407
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 85 и 46 равна 41.8780748
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 85 и 46 равна 84.6665426
Ссылка на результат
?n1=93&n2=85&n3=46
Найти высоту треугольника со сторонами 146, 130 и 128
Найти высоту треугольника со сторонами 89, 71 и 69
Найти высоту треугольника со сторонами 148, 131 и 120
Найти высоту треугольника со сторонами 131, 127 и 105
Найти высоту треугольника со сторонами 122, 106 и 85
Найти высоту треугольника со сторонами 113, 97 и 57
Найти высоту треугольника со сторонами 89, 71 и 69
Найти высоту треугольника со сторонами 148, 131 и 120
Найти высоту треугольника со сторонами 131, 127 и 105
Найти высоту треугольника со сторонами 122, 106 и 85
Найти высоту треугольника со сторонами 113, 97 и 57