Рассчитать высоту треугольника со сторонами 93, 87 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 87 + 9}{2}} \normalsize = 94.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94.5(94.5-93)(94.5-87)(94.5-9)}}{87}\normalsize = 6.93084148}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94.5(94.5-93)(94.5-87)(94.5-9)}}{93}\normalsize = 6.48369042}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94.5(94.5-93)(94.5-87)(94.5-9)}}{9}\normalsize = 66.9981343}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 87 и 9 равна 6.93084148
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 87 и 9 равна 6.48369042
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 87 и 9 равна 66.9981343
Ссылка на результат
?n1=93&n2=87&n3=9
Найти высоту треугольника со сторонами 75, 61 и 39
Найти высоту треугольника со сторонами 144, 143 и 100
Найти высоту треугольника со сторонами 144, 140 и 31
Найти высоту треугольника со сторонами 67, 63 и 37
Найти высоту треугольника со сторонами 132, 90 и 85
Найти высоту треугольника со сторонами 121, 84 и 74
Найти высоту треугольника со сторонами 144, 143 и 100
Найти высоту треугольника со сторонами 144, 140 и 31
Найти высоту треугольника со сторонами 67, 63 и 37
Найти высоту треугольника со сторонами 132, 90 и 85
Найти высоту треугольника со сторонами 121, 84 и 74