Рассчитать высоту треугольника со сторонами 93, 90 и 72

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 90 + 72}{2}} \normalsize = 127.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127.5(127.5-93)(127.5-90)(127.5-72)}}{90}\normalsize = 67.2379171}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127.5(127.5-93)(127.5-90)(127.5-72)}}{93}\normalsize = 65.0689521}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127.5(127.5-93)(127.5-90)(127.5-72)}}{72}\normalsize = 84.0473964}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 90 и 72 равна 67.2379171
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 90 и 72 равна 65.0689521
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 90 и 72 равна 84.0473964
Ссылка на результат
?n1=93&n2=90&n3=72