Рассчитать высоту треугольника со сторонами 93, 91 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 91 + 12}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-93)(98-91)(98-12)}}{91}\normalsize = 11.9367168}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-93)(98-91)(98-12)}}{93}\normalsize = 11.6800132}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-93)(98-91)(98-12)}}{12}\normalsize = 90.5201021}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 91 и 12 равна 11.9367168
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 91 и 12 равна 11.6800132
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 91 и 12 равна 90.5201021
Ссылка на результат
?n1=93&n2=91&n3=12
Найти высоту треугольника со сторонами 78, 46 и 45
Найти высоту треугольника со сторонами 88, 64 и 58
Найти высоту треугольника со сторонами 138, 103 и 36
Найти высоту треугольника со сторонами 107, 105 и 77
Найти высоту треугольника со сторонами 130, 120 и 102
Найти высоту треугольника со сторонами 148, 123 и 51
Найти высоту треугольника со сторонами 88, 64 и 58
Найти высоту треугольника со сторонами 138, 103 и 36
Найти высоту треугольника со сторонами 107, 105 и 77
Найти высоту треугольника со сторонами 130, 120 и 102
Найти высоту треугольника со сторонами 148, 123 и 51