Рассчитать высоту треугольника со сторонами 93, 91 и 3

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 91 + 3}{2}} \normalsize = 93.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93.5(93.5-93)(93.5-91)(93.5-3)}}{91}\normalsize = 2.26033966}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93.5(93.5-93)(93.5-91)(93.5-3)}}{93}\normalsize = 2.2117302}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93.5(93.5-93)(93.5-91)(93.5-3)}}{3}\normalsize = 68.5636363}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 91 и 3 равна 2.26033966
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 91 и 3 равна 2.2117302
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 91 и 3 равна 68.5636363
Ссылка на результат
?n1=93&n2=91&n3=3