Рассчитать высоту треугольника со сторонами 93, 92 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 92 + 28}{2}} \normalsize = 106.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106.5(106.5-93)(106.5-92)(106.5-28)}}{92}\normalsize = 27.8101087}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106.5(106.5-93)(106.5-92)(106.5-28)}}{93}\normalsize = 27.5110752}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106.5(106.5-93)(106.5-92)(106.5-28)}}{28}\normalsize = 91.3760714}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 92 и 28 равна 27.8101087
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 92 и 28 равна 27.5110752
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 92 и 28 равна 91.3760714
Ссылка на результат
?n1=93&n2=92&n3=28
Найти высоту треугольника со сторонами 139, 124 и 105
Найти высоту треугольника со сторонами 116, 108 и 10
Найти высоту треугольника со сторонами 109, 69 и 58
Найти высоту треугольника со сторонами 128, 120 и 48
Найти высоту треугольника со сторонами 72, 64 и 12
Найти высоту треугольника со сторонами 108, 99 и 13
Найти высоту треугольника со сторонами 116, 108 и 10
Найти высоту треугольника со сторонами 109, 69 и 58
Найти высоту треугольника со сторонами 128, 120 и 48
Найти высоту треугольника со сторонами 72, 64 и 12
Найти высоту треугольника со сторонами 108, 99 и 13