Рассчитать высоту треугольника со сторонами 93, 92 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 92 + 6}{2}} \normalsize = 95.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95.5(95.5-93)(95.5-92)(95.5-6)}}{92}\normalsize = 5.94510321}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95.5(95.5-93)(95.5-92)(95.5-6)}}{93}\normalsize = 5.88117736}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95.5(95.5-93)(95.5-92)(95.5-6)}}{6}\normalsize = 91.1582492}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 92 и 6 равна 5.94510321
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 92 и 6 равна 5.88117736
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 92 и 6 равна 91.1582492
Ссылка на результат
?n1=93&n2=92&n3=6
Найти высоту треугольника со сторонами 96, 82 и 71
Найти высоту треугольника со сторонами 150, 112 и 77
Найти высоту треугольника со сторонами 131, 111 и 105
Найти высоту треугольника со сторонами 148, 123 и 63
Найти высоту треугольника со сторонами 105, 74 и 56
Найти высоту треугольника со сторонами 91, 84 и 34
Найти высоту треугольника со сторонами 150, 112 и 77
Найти высоту треугольника со сторонами 131, 111 и 105
Найти высоту треугольника со сторонами 148, 123 и 63
Найти высоту треугольника со сторонами 105, 74 и 56
Найти высоту треугольника со сторонами 91, 84 и 34