Рассчитать высоту треугольника со сторонами 94, 68 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 68 + 33}{2}} \normalsize = 97.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-68)(97.5-33)}}{68}\normalsize = 23.6999963}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-68)(97.5-33)}}{94}\normalsize = 17.1446782}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-68)(97.5-33)}}{33}\normalsize = 48.836356}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 68 и 33 равна 23.6999963
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 68 и 33 равна 17.1446782
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 68 и 33 равна 48.836356
Ссылка на результат
?n1=94&n2=68&n3=33
Найти высоту треугольника со сторонами 49, 49 и 43
Найти высоту треугольника со сторонами 131, 112 и 44
Найти высоту треугольника со сторонами 129, 94 и 89
Найти высоту треугольника со сторонами 144, 136 и 69
Найти высоту треугольника со сторонами 112, 100 и 34
Найти высоту треугольника со сторонами 125, 96 и 52
Найти высоту треугольника со сторонами 131, 112 и 44
Найти высоту треугольника со сторонами 129, 94 и 89
Найти высоту треугольника со сторонами 144, 136 и 69
Найти высоту треугольника со сторонами 112, 100 и 34
Найти высоту треугольника со сторонами 125, 96 и 52