Рассчитать высоту треугольника со сторонами 94, 76 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 76 + 44}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-94)(107-76)(107-44)}}{76}\normalsize = 43.3741613}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-94)(107-76)(107-44)}}{94}\normalsize = 35.0684708}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-94)(107-76)(107-44)}}{44}\normalsize = 74.9190059}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 76 и 44 равна 43.3741613
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 76 и 44 равна 35.0684708
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 76 и 44 равна 74.9190059
Ссылка на результат
?n1=94&n2=76&n3=44
Найти высоту треугольника со сторонами 138, 109 и 109
Найти высоту треугольника со сторонами 113, 73 и 65
Найти высоту треугольника со сторонами 124, 119 и 35
Найти высоту треугольника со сторонами 129, 126 и 59
Найти высоту треугольника со сторонами 134, 132 и 83
Найти высоту треугольника со сторонами 147, 114 и 68
Найти высоту треугольника со сторонами 113, 73 и 65
Найти высоту треугольника со сторонами 124, 119 и 35
Найти высоту треугольника со сторонами 129, 126 и 59
Найти высоту треугольника со сторонами 134, 132 и 83
Найти высоту треугольника со сторонами 147, 114 и 68