Рассчитать высоту треугольника со сторонами 94, 77 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 77 + 54}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-94)(112.5-77)(112.5-54)}}{77}\normalsize = 53.9999684}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-94)(112.5-77)(112.5-54)}}{94}\normalsize = 44.2340166}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-94)(112.5-77)(112.5-54)}}{54}\normalsize = 76.9999549}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 77 и 54 равна 53.9999684
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 77 и 54 равна 44.2340166
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 77 и 54 равна 76.9999549
Ссылка на результат
?n1=94&n2=77&n3=54
Найти высоту треугольника со сторонами 139, 137 и 75
Найти высоту треугольника со сторонами 116, 106 и 76
Найти высоту треугольника со сторонами 94, 82 и 46
Найти высоту треугольника со сторонами 139, 110 и 31
Найти высоту треугольника со сторонами 111, 92 и 28
Найти высоту треугольника со сторонами 150, 116 и 91
Найти высоту треугольника со сторонами 116, 106 и 76
Найти высоту треугольника со сторонами 94, 82 и 46
Найти высоту треугольника со сторонами 139, 110 и 31
Найти высоту треугольника со сторонами 111, 92 и 28
Найти высоту треугольника со сторонами 150, 116 и 91