Рассчитать высоту треугольника со сторонами 94, 81 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 81 + 55}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-94)(115-81)(115-55)}}{81}\normalsize = 54.8048039}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-94)(115-81)(115-55)}}{94}\normalsize = 47.2254161}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-94)(115-81)(115-55)}}{55}\normalsize = 80.7125294}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 81 и 55 равна 54.8048039
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 81 и 55 равна 47.2254161
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 81 и 55 равна 80.7125294
Ссылка на результат
?n1=94&n2=81&n3=55
Найти высоту треугольника со сторонами 91, 70 и 63
Найти высоту треугольника со сторонами 144, 128 и 114
Найти высоту треугольника со сторонами 149, 130 и 49
Найти высоту треугольника со сторонами 132, 95 и 46
Найти высоту треугольника со сторонами 121, 115 и 16
Найти высоту треугольника со сторонами 142, 125 и 62
Найти высоту треугольника со сторонами 144, 128 и 114
Найти высоту треугольника со сторонами 149, 130 и 49
Найти высоту треугольника со сторонами 132, 95 и 46
Найти высоту треугольника со сторонами 121, 115 и 16
Найти высоту треугольника со сторонами 142, 125 и 62