Рассчитать высоту треугольника со сторонами 94, 81 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 81 + 59}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-94)(117-81)(117-59)}}{81}\normalsize = 58.5284567}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-94)(117-81)(117-59)}}{94}\normalsize = 50.4340957}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-94)(117-81)(117-59)}}{59}\normalsize = 80.352627}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 81 и 59 равна 58.5284567
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 81 и 59 равна 50.4340957
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 81 и 59 равна 80.352627
Ссылка на результат
?n1=94&n2=81&n3=59
Найти высоту треугольника со сторонами 85, 75 и 58
Найти высоту треугольника со сторонами 116, 79 и 49
Найти высоту треугольника со сторонами 117, 86 и 55
Найти высоту треугольника со сторонами 114, 73 и 73
Найти высоту треугольника со сторонами 102, 76 и 71
Найти высоту треугольника со сторонами 150, 137 и 106
Найти высоту треугольника со сторонами 116, 79 и 49
Найти высоту треугольника со сторонами 117, 86 и 55
Найти высоту треугольника со сторонами 114, 73 и 73
Найти высоту треугольника со сторонами 102, 76 и 71
Найти высоту треугольника со сторонами 150, 137 и 106