Рассчитать высоту треугольника со сторонами 94, 84 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 84 + 36}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-94)(107-84)(107-36)}}{84}\normalsize = 35.8845386}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-94)(107-84)(107-36)}}{94}\normalsize = 32.0670345}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-94)(107-84)(107-36)}}{36}\normalsize = 83.7305902}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 84 и 36 равна 35.8845386
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 84 и 36 равна 32.0670345
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 84 и 36 равна 83.7305902
Ссылка на результат
?n1=94&n2=84&n3=36
Найти высоту треугольника со сторонами 111, 85 и 65
Найти высоту треугольника со сторонами 79, 62 и 19
Найти высоту треугольника со сторонами 144, 124 и 87
Найти высоту треугольника со сторонами 127, 99 и 79
Найти высоту треугольника со сторонами 137, 107 и 68
Найти высоту треугольника со сторонами 95, 56 и 47
Найти высоту треугольника со сторонами 79, 62 и 19
Найти высоту треугольника со сторонами 144, 124 и 87
Найти высоту треугольника со сторонами 127, 99 и 79
Найти высоту треугольника со сторонами 137, 107 и 68
Найти высоту треугольника со сторонами 95, 56 и 47