Рассчитать высоту треугольника со сторонами 94, 85 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 85 + 16}{2}} \normalsize = 97.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-85)(97.5-16)}}{85}\normalsize = 13.8733458}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-85)(97.5-16)}}{94}\normalsize = 12.5450467}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-85)(97.5-16)}}{16}\normalsize = 73.7021495}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 85 и 16 равна 13.8733458
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 85 и 16 равна 12.5450467
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 85 и 16 равна 73.7021495
Ссылка на результат
?n1=94&n2=85&n3=16
Найти высоту треугольника со сторонами 35, 26 и 19
Найти высоту треугольника со сторонами 67, 44 и 33
Найти высоту треугольника со сторонами 131, 126 и 95
Найти высоту треугольника со сторонами 67, 58 и 29
Найти высоту треугольника со сторонами 142, 136 и 20
Найти высоту треугольника со сторонами 138, 136 и 36
Найти высоту треугольника со сторонами 67, 44 и 33
Найти высоту треугольника со сторонами 131, 126 и 95
Найти высоту треугольника со сторонами 67, 58 и 29
Найти высоту треугольника со сторонами 142, 136 и 20
Найти высоту треугольника со сторонами 138, 136 и 36