Рассчитать высоту треугольника со сторонами 94, 85 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 85 + 63}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-94)(121-85)(121-63)}}{85}\normalsize = 61.4541031}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-94)(121-85)(121-63)}}{94}\normalsize = 55.5701996}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-94)(121-85)(121-63)}}{63}\normalsize = 82.914266}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 85 и 63 равна 61.4541031
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 85 и 63 равна 55.5701996
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 85 и 63 равна 82.914266
Ссылка на результат
?n1=94&n2=85&n3=63
Найти высоту треугольника со сторонами 127, 102 и 95
Найти высоту треугольника со сторонами 70, 51 и 20
Найти высоту треугольника со сторонами 115, 107 и 50
Найти высоту треугольника со сторонами 69, 66 и 19
Найти высоту треугольника со сторонами 83, 60 и 33
Найти высоту треугольника со сторонами 41, 25 и 19
Найти высоту треугольника со сторонами 70, 51 и 20
Найти высоту треугольника со сторонами 115, 107 и 50
Найти высоту треугольника со сторонами 69, 66 и 19
Найти высоту треугольника со сторонами 83, 60 и 33
Найти высоту треугольника со сторонами 41, 25 и 19