Рассчитать высоту треугольника со сторонами 94, 86 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 86 + 10}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-94)(95-86)(95-10)}}{86}\normalsize = 6.26937236}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-94)(95-86)(95-10)}}{94}\normalsize = 5.73580875}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-94)(95-86)(95-10)}}{10}\normalsize = 53.9166023}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 86 и 10 равна 6.26937236
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 86 и 10 равна 5.73580875
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 86 и 10 равна 53.9166023
Ссылка на результат
?n1=94&n2=86&n3=10
Найти высоту треугольника со сторонами 142, 127 и 43
Найти высоту треугольника со сторонами 91, 60 и 47
Найти высоту треугольника со сторонами 141, 141 и 125
Найти высоту треугольника со сторонами 63, 57 и 54
Найти высоту треугольника со сторонами 79, 63 и 17
Найти высоту треугольника со сторонами 136, 127 и 106
Найти высоту треугольника со сторонами 91, 60 и 47
Найти высоту треугольника со сторонами 141, 141 и 125
Найти высоту треугольника со сторонами 63, 57 и 54
Найти высоту треугольника со сторонами 79, 63 и 17
Найти высоту треугольника со сторонами 136, 127 и 106