Рассчитать высоту треугольника со сторонами 94, 88 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 88 + 52}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-94)(117-88)(117-52)}}{88}\normalsize = 51.1870204}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-94)(117-88)(117-52)}}{94}\normalsize = 47.9197637}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-94)(117-88)(117-52)}}{52}\normalsize = 86.6241883}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 88 и 52 равна 51.1870204
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 88 и 52 равна 47.9197637
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 88 и 52 равна 86.6241883
Ссылка на результат
?n1=94&n2=88&n3=52
Найти высоту треугольника со сторонами 123, 89 и 86
Найти высоту треугольника со сторонами 126, 106 и 70
Найти высоту треугольника со сторонами 134, 91 и 44
Найти высоту треугольника со сторонами 87, 57 и 34
Найти высоту треугольника со сторонами 109, 87 и 30
Найти высоту треугольника со сторонами 48, 46 и 20
Найти высоту треугольника со сторонами 126, 106 и 70
Найти высоту треугольника со сторонами 134, 91 и 44
Найти высоту треугольника со сторонами 87, 57 и 34
Найти высоту треугольника со сторонами 109, 87 и 30
Найти высоту треугольника со сторонами 48, 46 и 20