Рассчитать высоту треугольника со сторонами 94, 89 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 89 + 85}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-94)(134-89)(134-85)}}{89}\normalsize = 77.2550149}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-94)(134-89)(134-85)}}{94}\normalsize = 73.1457056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-94)(134-89)(134-85)}}{85}\normalsize = 80.890545}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 89 и 85 равна 77.2550149
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 89 и 85 равна 73.1457056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 89 и 85 равна 80.890545
Ссылка на результат
?n1=94&n2=89&n3=85
Найти высоту треугольника со сторонами 105, 81 и 66
Найти высоту треугольника со сторонами 149, 145 и 63
Найти высоту треугольника со сторонами 141, 94 и 51
Найти высоту треугольника со сторонами 113, 105 и 94
Найти высоту треугольника со сторонами 138, 111 и 43
Найти высоту треугольника со сторонами 125, 118 и 110
Найти высоту треугольника со сторонами 149, 145 и 63
Найти высоту треугольника со сторонами 141, 94 и 51
Найти высоту треугольника со сторонами 113, 105 и 94
Найти высоту треугольника со сторонами 138, 111 и 43
Найти высоту треугольника со сторонами 125, 118 и 110