Рассчитать высоту треугольника со сторонами 94, 90 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 90 + 17}{2}} \normalsize = 100.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100.5(100.5-94)(100.5-90)(100.5-17)}}{90}\normalsize = 16.8176412}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100.5(100.5-94)(100.5-90)(100.5-17)}}{94}\normalsize = 16.1019969}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100.5(100.5-94)(100.5-90)(100.5-17)}}{17}\normalsize = 89.0345711}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 90 и 17 равна 16.8176412
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 90 и 17 равна 16.1019969
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 90 и 17 равна 89.0345711
Ссылка на результат
?n1=94&n2=90&n3=17
Найти высоту треугольника со сторонами 125, 119 и 87
Найти высоту треугольника со сторонами 140, 138 и 54
Найти высоту треугольника со сторонами 114, 96 и 66
Найти высоту треугольника со сторонами 115, 73 и 61
Найти высоту треугольника со сторонами 142, 91 и 78
Найти высоту треугольника со сторонами 109, 81 и 66
Найти высоту треугольника со сторонами 140, 138 и 54
Найти высоту треугольника со сторонами 114, 96 и 66
Найти высоту треугольника со сторонами 115, 73 и 61
Найти высоту треугольника со сторонами 142, 91 и 78
Найти высоту треугольника со сторонами 109, 81 и 66