Рассчитать высоту треугольника со сторонами 94, 90 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 90 + 34}{2}} \normalsize = 109}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109(109-94)(109-90)(109-34)}}{90}\normalsize = 33.9198401}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109(109-94)(109-90)(109-34)}}{94}\normalsize = 32.4764427}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109(109-94)(109-90)(109-34)}}{34}\normalsize = 89.7878122}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 90 и 34 равна 33.9198401
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 90 и 34 равна 32.4764427
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 90 и 34 равна 89.7878122
Ссылка на результат
?n1=94&n2=90&n3=34
Найти высоту треугольника со сторонами 149, 143 и 65
Найти высоту треугольника со сторонами 148, 77 и 76
Найти высоту треугольника со сторонами 136, 102 и 36
Найти высоту треугольника со сторонами 131, 98 и 94
Найти высоту треугольника со сторонами 108, 99 и 99
Найти высоту треугольника со сторонами 113, 110 и 45
Найти высоту треугольника со сторонами 148, 77 и 76
Найти высоту треугольника со сторонами 136, 102 и 36
Найти высоту треугольника со сторонами 131, 98 и 94
Найти высоту треугольника со сторонами 108, 99 и 99
Найти высоту треугольника со сторонами 113, 110 и 45