Рассчитать высоту треугольника со сторонами 94, 93 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 93 + 48}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-94)(117.5-93)(117.5-48)}}{93}\normalsize = 46.6310673}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-94)(117.5-93)(117.5-48)}}{94}\normalsize = 46.1349921}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-94)(117.5-93)(117.5-48)}}{48}\normalsize = 90.3476929}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 93 и 48 равна 46.6310673
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 93 и 48 равна 46.1349921
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 93 и 48 равна 90.3476929
Ссылка на результат
?n1=94&n2=93&n3=48
Найти высоту треугольника со сторонами 150, 120 и 40
Найти высоту треугольника со сторонами 106, 101 и 8
Найти высоту треугольника со сторонами 121, 98 и 89
Найти высоту треугольника со сторонами 108, 105 и 101
Найти высоту треугольника со сторонами 130, 90 и 53
Найти высоту треугольника со сторонами 112, 94 и 19
Найти высоту треугольника со сторонами 106, 101 и 8
Найти высоту треугольника со сторонами 121, 98 и 89
Найти высоту треугольника со сторонами 108, 105 и 101
Найти высоту треугольника со сторонами 130, 90 и 53
Найти высоту треугольника со сторонами 112, 94 и 19