Рассчитать высоту треугольника со сторонами 95, 52 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 52 + 44}{2}} \normalsize = 95.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95.5(95.5-95)(95.5-52)(95.5-44)}}{52}\normalsize = 12.579448}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95.5(95.5-95)(95.5-52)(95.5-44)}}{95}\normalsize = 6.88559257}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95.5(95.5-95)(95.5-52)(95.5-44)}}{44}\normalsize = 14.8666203}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 52 и 44 равна 12.579448
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 52 и 44 равна 6.88559257
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 52 и 44 равна 14.8666203
Ссылка на результат
?n1=95&n2=52&n3=44
Найти высоту треугольника со сторонами 145, 93 и 76
Найти высоту треугольника со сторонами 9, 9 и 8
Найти высоту треугольника со сторонами 85, 49 и 38
Найти высоту треугольника со сторонами 118, 117 и 87
Найти высоту треугольника со сторонами 79, 75 и 20
Найти высоту треугольника со сторонами 139, 112 и 70
Найти высоту треугольника со сторонами 9, 9 и 8
Найти высоту треугольника со сторонами 85, 49 и 38
Найти высоту треугольника со сторонами 118, 117 и 87
Найти высоту треугольника со сторонами 79, 75 и 20
Найти высоту треугольника со сторонами 139, 112 и 70