Рассчитать высоту треугольника со сторонами 95, 55 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 55 + 48}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-95)(99-55)(99-48)}}{55}\normalsize = 34.2788565}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-95)(99-55)(99-48)}}{95}\normalsize = 19.8456537}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-95)(99-55)(99-48)}}{48}\normalsize = 39.2778564}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 55 и 48 равна 34.2788565
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 55 и 48 равна 19.8456537
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 55 и 48 равна 39.2778564
Ссылка на результат
?n1=95&n2=55&n3=48
Найти высоту треугольника со сторонами 114, 110 и 36
Найти высоту треугольника со сторонами 132, 127 и 122
Найти высоту треугольника со сторонами 129, 115 и 78
Найти высоту треугольника со сторонами 136, 114 и 56
Найти высоту треугольника со сторонами 83, 63 и 21
Найти высоту треугольника со сторонами 85, 52 и 42
Найти высоту треугольника со сторонами 132, 127 и 122
Найти высоту треугольника со сторонами 129, 115 и 78
Найти высоту треугольника со сторонами 136, 114 и 56
Найти высоту треугольника со сторонами 83, 63 и 21
Найти высоту треугольника со сторонами 85, 52 и 42