Рассчитать высоту треугольника со сторонами 95, 60 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 60 + 51}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-95)(103-60)(103-51)}}{60}\normalsize = 45.2457978}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-95)(103-60)(103-51)}}{95}\normalsize = 28.5762934}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-95)(103-60)(103-51)}}{51}\normalsize = 53.2303504}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 60 и 51 равна 45.2457978
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 60 и 51 равна 28.5762934
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 60 и 51 равна 53.2303504
Ссылка на результат
?n1=95&n2=60&n3=51
Найти высоту треугольника со сторонами 123, 105 и 65
Найти высоту треугольника со сторонами 48, 47 и 8
Найти высоту треугольника со сторонами 142, 98 и 57
Найти высоту треугольника со сторонами 147, 104 и 84
Найти высоту треугольника со сторонами 78, 51 и 38
Найти высоту треугольника со сторонами 134, 134 и 84
Найти высоту треугольника со сторонами 48, 47 и 8
Найти высоту треугольника со сторонами 142, 98 и 57
Найти высоту треугольника со сторонами 147, 104 и 84
Найти высоту треугольника со сторонами 78, 51 и 38
Найти высоту треугольника со сторонами 134, 134 и 84