Рассчитать высоту треугольника со сторонами 95, 61 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 61 + 59}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-95)(107.5-61)(107.5-59)}}{61}\normalsize = 57.0764226}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-95)(107.5-61)(107.5-59)}}{95}\normalsize = 36.6490714}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-95)(107.5-61)(107.5-59)}}{59}\normalsize = 59.0112166}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 61 и 59 равна 57.0764226
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 61 и 59 равна 36.6490714
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 61 и 59 равна 59.0112166
Ссылка на результат
?n1=95&n2=61&n3=59
Найти высоту треугольника со сторонами 106, 87 и 87
Найти высоту треугольника со сторонами 119, 94 и 51
Найти высоту треугольника со сторонами 104, 91 и 52
Найти высоту треугольника со сторонами 125, 80 и 80
Найти высоту треугольника со сторонами 142, 129 и 125
Найти высоту треугольника со сторонами 138, 132 и 111
Найти высоту треугольника со сторонами 119, 94 и 51
Найти высоту треугольника со сторонами 104, 91 и 52
Найти высоту треугольника со сторонами 125, 80 и 80
Найти высоту треугольника со сторонами 142, 129 и 125
Найти высоту треугольника со сторонами 138, 132 и 111