Рассчитать высоту треугольника со сторонами 95, 75 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 75 + 36}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-95)(103-75)(103-36)}}{75}\normalsize = 33.1549788}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-95)(103-75)(103-36)}}{95}\normalsize = 26.1749833}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-95)(103-75)(103-36)}}{36}\normalsize = 69.0728726}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 75 и 36 равна 33.1549788
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 75 и 36 равна 26.1749833
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 75 и 36 равна 69.0728726
Ссылка на результат
?n1=95&n2=75&n3=36
Найти высоту треугольника со сторонами 109, 95 и 46
Найти высоту треугольника со сторонами 91, 91 и 3
Найти высоту треугольника со сторонами 142, 90 и 86
Найти высоту треугольника со сторонами 140, 100 и 61
Найти высоту треугольника со сторонами 58, 54 и 25
Найти высоту треугольника со сторонами 143, 124 и 117
Найти высоту треугольника со сторонами 91, 91 и 3
Найти высоту треугольника со сторонами 142, 90 и 86
Найти высоту треугольника со сторонами 140, 100 и 61
Найти высоту треугольника со сторонами 58, 54 и 25
Найти высоту треугольника со сторонами 143, 124 и 117