Рассчитать высоту треугольника со сторонами 95, 78 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 78 + 57}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-95)(115-78)(115-57)}}{78}\normalsize = 56.9657959}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-95)(115-78)(115-57)}}{95}\normalsize = 46.7719167}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-95)(115-78)(115-57)}}{57}\normalsize = 77.9531944}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 78 и 57 равна 56.9657959
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 78 и 57 равна 46.7719167
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 78 и 57 равна 77.9531944
Ссылка на результат
?n1=95&n2=78&n3=57
Найти высоту треугольника со сторонами 141, 104 и 92
Найти высоту треугольника со сторонами 83, 82 и 77
Найти высоту треугольника со сторонами 68, 49 и 47
Найти высоту треугольника со сторонами 45, 43 и 26
Найти высоту треугольника со сторонами 82, 61 и 59
Найти высоту треугольника со сторонами 147, 108 и 100
Найти высоту треугольника со сторонами 83, 82 и 77
Найти высоту треугольника со сторонами 68, 49 и 47
Найти высоту треугольника со сторонами 45, 43 и 26
Найти высоту треугольника со сторонами 82, 61 и 59
Найти высоту треугольника со сторонами 147, 108 и 100