Рассчитать высоту треугольника со сторонами 95, 81 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 81 + 56}{2}} \normalsize = 116}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{116(116-95)(116-81)(116-56)}}{81}\normalsize = 55.8461536}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{116(116-95)(116-81)(116-56)}}{95}\normalsize = 47.6161941}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{116(116-95)(116-81)(116-56)}}{56}\normalsize = 80.7774721}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 81 и 56 равна 55.8461536
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 81 и 56 равна 47.6161941
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 81 и 56 равна 80.7774721
Ссылка на результат
?n1=95&n2=81&n3=56
Найти высоту треугольника со сторонами 80, 69 и 31
Найти высоту треугольника со сторонами 139, 126 и 23
Найти высоту треугольника со сторонами 93, 78 и 58
Найти высоту треугольника со сторонами 126, 110 и 95
Найти высоту треугольника со сторонами 134, 112 и 80
Найти высоту треугольника со сторонами 32, 27 и 7
Найти высоту треугольника со сторонами 139, 126 и 23
Найти высоту треугольника со сторонами 93, 78 и 58
Найти высоту треугольника со сторонами 126, 110 и 95
Найти высоту треугольника со сторонами 134, 112 и 80
Найти высоту треугольника со сторонами 32, 27 и 7