Рассчитать высоту треугольника со сторонами 95, 84 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 84 + 55}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-95)(117-84)(117-55)}}{84}\normalsize = 54.6396358}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-95)(117-84)(117-55)}}{95}\normalsize = 48.3129411}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-95)(117-84)(117-55)}}{55}\normalsize = 83.4496255}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 84 и 55 равна 54.6396358
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 84 и 55 равна 48.3129411
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 84 и 55 равна 83.4496255
Ссылка на результат
?n1=95&n2=84&n3=55
Найти высоту треугольника со сторонами 85, 68 и 46
Найти высоту треугольника со сторонами 58, 38 и 30
Найти высоту треугольника со сторонами 107, 106 и 2
Найти высоту треугольника со сторонами 74, 66 и 13
Найти высоту треугольника со сторонами 104, 100 и 99
Найти высоту треугольника со сторонами 73, 69 и 58
Найти высоту треугольника со сторонами 58, 38 и 30
Найти высоту треугольника со сторонами 107, 106 и 2
Найти высоту треугольника со сторонами 74, 66 и 13
Найти высоту треугольника со сторонами 104, 100 и 99
Найти высоту треугольника со сторонами 73, 69 и 58