Рассчитать высоту треугольника со сторонами 95, 86 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 86 + 26}{2}} \normalsize = 103.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103.5(103.5-95)(103.5-86)(103.5-26)}}{86}\normalsize = 25.4027689}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103.5(103.5-95)(103.5-86)(103.5-26)}}{95}\normalsize = 22.9961908}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103.5(103.5-95)(103.5-86)(103.5-26)}}{26}\normalsize = 84.0245434}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 86 и 26 равна 25.4027689
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 86 и 26 равна 22.9961908
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 86 и 26 равна 84.0245434
Ссылка на результат
?n1=95&n2=86&n3=26
Найти высоту треугольника со сторонами 106, 72 и 54
Найти высоту треугольника со сторонами 100, 71 и 68
Найти высоту треугольника со сторонами 115, 112 и 31
Найти высоту треугольника со сторонами 116, 68 и 54
Найти высоту треугольника со сторонами 110, 92 и 79
Найти высоту треугольника со сторонами 88, 86 и 68
Найти высоту треугольника со сторонами 100, 71 и 68
Найти высоту треугольника со сторонами 115, 112 и 31
Найти высоту треугольника со сторонами 116, 68 и 54
Найти высоту треугольника со сторонами 110, 92 и 79
Найти высоту треугольника со сторонами 88, 86 и 68