Рассчитать высоту треугольника со сторонами 95, 86 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 86 + 37}{2}} \normalsize = 109}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109(109-95)(109-86)(109-37)}}{86}\normalsize = 36.9691085}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109(109-95)(109-86)(109-37)}}{95}\normalsize = 33.4667719}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109(109-95)(109-86)(109-37)}}{37}\normalsize = 85.9281981}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 86 и 37 равна 36.9691085
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 86 и 37 равна 33.4667719
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 86 и 37 равна 85.9281981
Ссылка на результат
?n1=95&n2=86&n3=37
Найти высоту треугольника со сторонами 43, 32 и 24
Найти высоту треугольника со сторонами 131, 103 и 62
Найти высоту треугольника со сторонами 91, 77 и 35
Найти высоту треугольника со сторонами 144, 127 и 35
Найти высоту треугольника со сторонами 106, 104 и 72
Найти высоту треугольника со сторонами 108, 94 и 22
Найти высоту треугольника со сторонами 131, 103 и 62
Найти высоту треугольника со сторонами 91, 77 и 35
Найти высоту треугольника со сторонами 144, 127 и 35
Найти высоту треугольника со сторонами 106, 104 и 72
Найти высоту треугольника со сторонами 108, 94 и 22