Рассчитать высоту треугольника со сторонами 95, 87 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 87 + 18}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-95)(100-87)(100-18)}}{87}\normalsize = 16.7831837}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-95)(100-87)(100-18)}}{95}\normalsize = 15.3698629}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-95)(100-87)(100-18)}}{18}\normalsize = 81.1187211}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 87 и 18 равна 16.7831837
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 87 и 18 равна 15.3698629
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 87 и 18 равна 81.1187211
Ссылка на результат
?n1=95&n2=87&n3=18
Найти высоту треугольника со сторонами 135, 113 и 76
Найти высоту треугольника со сторонами 145, 107 и 66
Найти высоту треугольника со сторонами 109, 95 и 72
Найти высоту треугольника со сторонами 126, 96 и 85
Найти высоту треугольника со сторонами 121, 104 и 90
Найти высоту треугольника со сторонами 59, 51 и 17
Найти высоту треугольника со сторонами 145, 107 и 66
Найти высоту треугольника со сторонами 109, 95 и 72
Найти высоту треугольника со сторонами 126, 96 и 85
Найти высоту треугольника со сторонами 121, 104 и 90
Найти высоту треугольника со сторонами 59, 51 и 17