Рассчитать высоту треугольника со сторонами 95, 91 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 91 + 67}{2}} \normalsize = 126.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-95)(126.5-91)(126.5-67)}}{91}\normalsize = 63.7619811}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-95)(126.5-91)(126.5-67)}}{95}\normalsize = 61.0772661}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-95)(126.5-91)(126.5-67)}}{67}\normalsize = 86.6020938}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 91 и 67 равна 63.7619811
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 91 и 67 равна 61.0772661
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 91 и 67 равна 86.6020938
Ссылка на результат
?n1=95&n2=91&n3=67
Найти высоту треугольника со сторонами 113, 112 и 107
Найти высоту треугольника со сторонами 146, 135 и 89
Найти высоту треугольника со сторонами 91, 81 и 39
Найти высоту треугольника со сторонами 88, 81 и 63
Найти высоту треугольника со сторонами 135, 120 и 21
Найти высоту треугольника со сторонами 17, 14 и 5
Найти высоту треугольника со сторонами 146, 135 и 89
Найти высоту треугольника со сторонами 91, 81 и 39
Найти высоту треугольника со сторонами 88, 81 и 63
Найти высоту треугольника со сторонами 135, 120 и 21
Найти высоту треугольника со сторонами 17, 14 и 5