Рассчитать высоту треугольника со сторонами 96, 54 и 46

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 54 + 46}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-96)(98-54)(98-46)}}{54}\normalsize = 24.8023186}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-96)(98-54)(98-46)}}{96}\normalsize = 13.9513042}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-96)(98-54)(98-46)}}{46}\normalsize = 29.1157653}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 54 и 46 равна 24.8023186
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 54 и 46 равна 13.9513042
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 54 и 46 равна 29.1157653
Ссылка на результат
?n1=96&n2=54&n3=46