Рассчитать высоту треугольника со сторонами 96, 54 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 54 + 50}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-96)(100-54)(100-50)}}{54}\normalsize = 35.524678}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-96)(100-54)(100-50)}}{96}\normalsize = 19.9826313}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-96)(100-54)(100-50)}}{50}\normalsize = 38.3666522}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 54 и 50 равна 35.524678
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 54 и 50 равна 19.9826313
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 54 и 50 равна 38.3666522
Ссылка на результат
?n1=96&n2=54&n3=50
Найти высоту треугольника со сторонами 145, 139 и 86
Найти высоту треугольника со сторонами 113, 103 и 53
Найти высоту треугольника со сторонами 93, 89 и 57
Найти высоту треугольника со сторонами 132, 92 и 88
Найти высоту треугольника со сторонами 112, 106 и 38
Найти высоту треугольника со сторонами 114, 114 и 108
Найти высоту треугольника со сторонами 113, 103 и 53
Найти высоту треугольника со сторонами 93, 89 и 57
Найти высоту треугольника со сторонами 132, 92 и 88
Найти высоту треугольника со сторонами 112, 106 и 38
Найти высоту треугольника со сторонами 114, 114 и 108