Рассчитать высоту треугольника со сторонами 96, 59 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 59 + 43}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-96)(99-59)(99-43)}}{59}\normalsize = 27.6490503}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-96)(99-59)(99-43)}}{96}\normalsize = 16.9926455}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-96)(99-59)(99-43)}}{43}\normalsize = 37.937069}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 59 и 43 равна 27.6490503
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 59 и 43 равна 16.9926455
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 59 и 43 равна 37.937069
Ссылка на результат
?n1=96&n2=59&n3=43
Найти высоту треугольника со сторонами 136, 124 и 49
Найти высоту треугольника со сторонами 123, 113 и 53
Найти высоту треугольника со сторонами 148, 148 и 75
Найти высоту треугольника со сторонами 132, 103 и 91
Найти высоту треугольника со сторонами 144, 128 и 88
Найти высоту треугольника со сторонами 134, 109 и 68
Найти высоту треугольника со сторонами 123, 113 и 53
Найти высоту треугольника со сторонами 148, 148 и 75
Найти высоту треугольника со сторонами 132, 103 и 91
Найти высоту треугольника со сторонами 144, 128 и 88
Найти высоту треугольника со сторонами 134, 109 и 68