Рассчитать высоту треугольника со сторонами 96, 59 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 59 + 45}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-96)(100-59)(100-45)}}{59}\normalsize = 32.194468}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-96)(100-59)(100-45)}}{96}\normalsize = 19.7861835}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-96)(100-59)(100-45)}}{45}\normalsize = 42.2105247}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 59 и 45 равна 32.194468
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 59 и 45 равна 19.7861835
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 59 и 45 равна 42.2105247
Ссылка на результат
?n1=96&n2=59&n3=45
Найти высоту треугольника со сторонами 132, 120 и 88
Найти высоту треугольника со сторонами 102, 80 и 52
Найти высоту треугольника со сторонами 138, 135 и 106
Найти высоту треугольника со сторонами 129, 93 и 89
Найти высоту треугольника со сторонами 148, 89 и 61
Найти высоту треугольника со сторонами 103, 96 и 22
Найти высоту треугольника со сторонами 102, 80 и 52
Найти высоту треугольника со сторонами 138, 135 и 106
Найти высоту треугольника со сторонами 129, 93 и 89
Найти высоту треугольника со сторонами 148, 89 и 61
Найти высоту треугольника со сторонами 103, 96 и 22