Рассчитать высоту треугольника со сторонами 96, 65 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 65 + 39}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-96)(100-65)(100-39)}}{65}\normalsize = 28.4344986}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-96)(100-65)(100-39)}}{96}\normalsize = 19.2525251}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-96)(100-65)(100-39)}}{39}\normalsize = 47.390831}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 65 и 39 равна 28.4344986
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 65 и 39 равна 19.2525251
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 65 и 39 равна 47.390831
Ссылка на результат
?n1=96&n2=65&n3=39
Найти высоту треугольника со сторонами 123, 117 и 78
Найти высоту треугольника со сторонами 111, 80 и 60
Найти высоту треугольника со сторонами 128, 121 и 89
Найти высоту треугольника со сторонами 132, 97 и 66
Найти высоту треугольника со сторонами 140, 117 и 62
Найти высоту треугольника со сторонами 67, 48 и 27
Найти высоту треугольника со сторонами 111, 80 и 60
Найти высоту треугольника со сторонами 128, 121 и 89
Найти высоту треугольника со сторонами 132, 97 и 66
Найти высоту треугольника со сторонами 140, 117 и 62
Найти высоту треугольника со сторонами 67, 48 и 27